Chevron Down
Table of Contents
Chevron DownAPI Reference

Table

Logical table as sequence of chunked arrays

Overview

The JavaScript Table class is not part of the Apache Arrow specification as such, but is rather a tool to allow you to work with multiple record batches and array pieces as a single logical dataset.

As a relevant example, we may receive multiple small record batches in a socket stream, then need to concatenate them into contiguous memory for use in NumPy or pandas. The Table object makes this efficient without requiring additional memory copying.

A Table’s columns are instances of Column, which is a container for one or more arrays of the same type.

Usage

Table.new() accepts an Object of Columns or Vectors, where the keys will be used as the field names for the Schema:

const i32s = Int32Vector.from([1, 2, 3]);
const f32s = Float32Vector.from([.1, .2, .3]);
const table = Table.new({ i32: i32s, f32: f32s });
assert(table.schema.fields[0].name === 'i32');

It also accepts a a list of Vectors with an optional list of names or Fields for the resulting Schema. If the list is omitted or a name is missing, the numeric index of each Vector will be used as the name:

const i32s = Int32Vector.from([1, 2, 3]);
const f32s = Float32Vector.from([.1, .2, .3]);
const table = Table.new([i32s, f32s], ['i32']);
assert(table.schema.fields[0].name === 'i32');
assert(table.schema.fields[1].name === '1');

If the supplied arguments are Column instances, Table.new will infer the Schema from the Columns:

const i32s = Column.new('i32', Int32Vector.from([1, 2, 3]));
const f32s = Column.new('f32', Float32Vector.from([.1, .2, .3]));
const table = Table.new(i32s, f32s);
assert(table.schema.fields[0].name === 'i32');
assert(table.schema.fields[1].name === 'f32');

If the supplied Vector or Column lengths are unequal, Table.new will extend the lengths of the shorter Columns, allocating additional bytes to represent the additional null slots. The memory required to allocate these additional bitmaps can be computed as:

let additionalBytes = 0;
for (let vec in shorter_vectors) {
 additionalBytes += (((longestLength - vec.length) + 63) & ~63) >> 3;
}

For example, an additional null bitmap for one million null values would require 125,000 bytes (((1e6 + 63) & ~63) >> 3), or approx. 0.11MiB

Inheritance

Table extends Chunked

Static Methods

Table.empty() : Table

Creates an empty table

Table.from() : Table

Creates an empty table

Table.from(source: RecordBatchReader): Table

Table.from(source: Promise): Promise

Table.from(source?: any) : Table

Table.fromAsync(source: import('./ipc/reader').FromArgs): Promise

Table.fromVectors(vectors: any[], names?: String[]) : Table

Table.fromStruct(struct: Vector) : Table

Table.new(columns: Object)

Table.new(...columns)

Table.new(vectors: Vector[], names: String[])

Type safe constructors. Functionally equivalent to calling new Table() with the same arguments, however if using Typescript using the new method instead will ensure that types inferred from the arguments "flow through" into the return Table type.

Members

schema (readonly)

The Schema of this table.

length : Number (readonly)

The number of rows in this table.

TBD: this does not consider filters

chunks : RecordBatch[] (readonly)

The list of chunks in this table.

numCols : Number (readonly)

The number of columns in this table.

Methods

constructor(batches: RecordBatch[])

The schema will be inferred from the record batches.

constructor(...batches: RecordBatch[])

The schema will be inferred from the record batches.

constructor(schema: Schema, batches: RecordBatch[])

constructor(schema: Schema, ...batches: RecordBatch[])

constructor(...args: any[])

Create a new Table from a collection of Columns or Vectors, with an optional list of names or Fields.

TBD

clone(chunks?:)

Returns a new copy of this table.

getColumnAt(index: number): Column | null

Gets a column by index.

getColumn(name: String): Column | null

Gets a column by name

getColumnIndex(name: String) : Number | null

Returns the index of the column with name name.

getChildAt(index: number): Column | null

TBD

serialize(encoding = 'binary', stream = true) : Uint8Array

Returns a Uint8Array that contains an encoding of all the data in the table.

Note: Passing the returned data back into Table.from() creates a "deep clone" of the table.

count(): number

TBD - Returns the number of elements.

select(...columnNames: string[]) : Table

Returns a new Table with the specified subset of columns, in the specified order.

countBy(name : Col | String) : Table

Returns a new Table that contains two columns (values and counts).