Examples
Some short examples
Get a table from an Arrow file on disk (in IPC format)
import {readFileSync} from 'fs';
import {Table} from 'apache-arrow';
const arrow = readFileSync('simple.arrow');
const table = Table.from([arrow]);
console.log(table.toString());
/*
foo, bar, baz
1, 1, aa
null, null, null
3, null, null
4, 4, bbb
5, 5, cccc
*/
Create a Table when the Arrow file is split across buffers
import {readFileSync} from 'fs';
import {Table} from 'apache-arrow';
const table = Table.from(
['latlong/schema.arrow', 'latlong/records.arrow'].map((file) => readFileSync(file))
);
console.log(table.toString());
/*
origin_lat, origin_lon
35.393089294433594, -97.6007308959961
35.393089294433594, -97.6007308959961
35.393089294433594, -97.6007308959961
29.533695220947266, -98.46977996826172
29.533695220947266, -98.46977996826172
*/
Create a Table from JavaScript arrays
import {Table, FloatVector, DateVector} from 'apache-arrow';
const LENGTH = 2000;
const rainAmounts = Float32Array.from({length: LENGTH}, () =>
Number((Math.random() * 20).toFixed(1))
);
const rainDates = Array.from(
{length: LENGTH},
(_, i) => new Date(Date.now() - 1000 * 60 * 60 * 24 * i)
);
const rainfall = Table.new(
[FloatVector.from(rainAmounts), DateVector.from(rainDates)],
['precipitation', 'date']
);
Load data with fetch
import {Table} from 'apache-arrow';
const table = await Table.from(fetch('/simple.arrow'));
console.log(table.toString());
Columns look like JS Arrays
import {readFileSync} from 'fs';
import {Table} from 'apache-arrow';
const table = Table.from(['latlong/schema.arrow', 'latlong/records.arrow'].map(readFileSync));
const column = table.getColumn('origin_lat');
// Copy the data into a TypedArray
const typed = column.toArray();
assert(typed instanceof Float32Array);
for (let i = -1, n = column.length; ++i < n; ) {
assert(column.get(i) === typed[i]);
}